1 <?xml version="1.0" encoding="ISO-8859-1"?>
3 <screensaver name="geodesic" _label="Geodesic" gl="yes">
10 <option id="mesh" _label="Mesh faces"/>
11 <option id="solid" _label="Solid faces" arg-set="-mode solid"/>
12 <option id="stellated" _label="Stellated faces" arg-set="-mode stellated"/>
13 <option id="stellated2" _label="Inverse Stellated" arg-set="-mode stellated2"/>
14 <option id="wire" _label="Wireframe" arg-set="-mode wire"/>
15 <option id="random" _label="Random face style" arg-set="-mode random"/>
18 <boolean id="wander" _label="Wander" arg-unset="-no-wander"/>
19 <boolean id="spin" _label="Spin" arg-unset="-no-spin"/>
20 <boolean id="showfps" _label="Show frame rate" arg-set="-fps"/>
25 <number id="delay" type="slider" arg="-delay %"
26 _label="Frame rate" _low-label="Low" _high-label="High"
27 low="0" high="100000" default="30000"
30 <number id="speed" type="slider" arg="-speed %"
31 _label="Animation speed" _low-label="Slow" _high-label="Fast"
32 low="0.05" high="10.0" default="1.0"/>
34 <number id="count" type="slider" arg="-count %"
35 _label="Depth" _low-label="1" _high-label="8"
36 low="1" high="8" default="4"/>
41 Animates a mesh geodesic sphere of increasing and decreasing complexity.
43 A geodesic sphere is an icosohedron whose equilateral faces are
44 sub-divided into non-equilateral triangles to more closely approximate
47 The animation shows the equilateral triangles subdivided into four
48 coplanar equilateral triangles; and then inflated outward, causing the
49 sub-triangles to no longer be equilateral, but to more closely
50 approximate the surface of a sphere.
52 http://en.wikipedia.org/wiki/Geodesic_dome
53 http://en.wikipedia.org/wiki/Buckminster_Fuller
55 Written by Jamie Zawinski; 2013.