From http://www.jwz.org/xscreensaver/xscreensaver-5.23.tar.gz
[xscreensaver] / hacks / config / geodesic.xml
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2
3 <screensaver name="geodesic" _label="Geodesic" gl="yes">
4
5   <command arg="-root"/>
6
7   <hgroup>
8    <vgroup>
9     <select id="object">
10      <option id="mesh"       _label="Mesh faces"/>
11      <option id="solid"      _label="Solid faces" arg-set="-mode solid"/>
12      <option id="stellated"  _label="Stellated faces" arg-set="-mode stellated"/>
13      <option id="stellated2" _label="Inverse Stellated" arg-set="-mode stellated2"/>
14      <option id="wire"       _label="Wireframe" arg-set="-mode wire"/>
15      <option id="random"     _label="Random face style" arg-set="-mode random"/>
16     </select>
17
18     <boolean id="wander" _label="Wander"    arg-unset="-no-wander"/>
19     <boolean id="spin"   _label="Spin"      arg-unset="-no-spin"/>
20     <boolean id="showfps" _label="Show frame rate" arg-set="-fps"/>
21
22    </vgroup>
23
24    <vgroup>
25     <number id="delay" type="slider" arg="-delay %"
26             _label="Frame rate" _low-label="Low" _high-label="High"
27             low="0" high="100000" default="30000"
28             convert="invert"/>
29
30     <number id="speed" type="slider" arg="-speed %"
31             _label="Animation speed" _low-label="Slow" _high-label="Fast"
32             low="0.05" high="10.0" default="1.0"/>
33
34     <number id="count" type="slider" arg="-count %"
35             _label="Depth" _low-label="1" _high-label="8"
36             low="1" high="8" default="4"/>
37    </vgroup>
38   </hgroup>
39
40   <_description>
41 Animates a mesh geodesic sphere of increasing and decreasing complexity.
42
43 A geodesic sphere is an icosohedron whose equilateral faces are
44 sub-divided into non-equilateral triangles to more closely approximate
45 a sphere.
46
47 The animation shows the equilateral triangles subdivided into four
48 coplanar equilateral triangles; and then inflated outward, causing the
49 sub-triangles to no longer be equilateral, but to more closely
50 approximate the surface of a sphere.
51
52 http://en.wikipedia.org/wiki/Geodesic_dome
53 http://en.wikipedia.org/wiki/Buckminster_Fuller
54
55 Written by Jamie Zawinski; 2013.
56   </_description>
57 </screensaver>