X-Git-Url: http://git.hungrycats.org/cgi-bin/gitweb.cgi?p=xscreensaver;a=blobdiff_plain;f=hacks%2Fglx%2Fklein.c;h=0c58c9c3c2cb9ee6f37c1037b409081d06916c7f;hp=ac6b5d16138f67952f7a180e4ffeaac27d09232e;hb=8afc01a67be4fbf3f1cc0fce9adf01b5289a21c6;hpb=3f1091236d800c43a3124c44c7da54e53f205b13 diff --git a/hacks/glx/klein.c b/hacks/glx/klein.c index ac6b5d16..0c58c9c3 100644 --- a/hacks/glx/klein.c +++ b/hacks/glx/klein.c @@ -5,7 +5,7 @@ static const char sccsid[] = "@(#)klein.c 1.1 08/10/04 xlockmore"; #endif -/* Copyright (c) 2005-2009 Carsten Steger . */ +/* Copyright (c) 2005-2013 Carsten Steger . */ /* * Permission to use, copy, modify, and distribute this software and its @@ -23,15 +23,18 @@ static const char sccsid[] = "@(#)klein.c 1.1 08/10/04 xlockmore"; * REVISION HISTORY: * C. Steger - 08/10/04: Initial version * C. Steger - 09/08/03: Changes to the parameter handling + * C. Steger - 13/12/25: Added the squeezed torus Klein bottle */ /* - * This program shows two different Klein bottles in 4d: the figure-8 Klein - * bottle or the Lawson Klein bottle. You can walk on the Klein bottle, see - * it turn in 4d, or walk on it while it turns in 4d. The figure-8 Klein - * bottle is well known in its 3d form. The 4d form used in this program is - * an extension of the 3d form to 4d that does not intersect itself in 4d - * (which can be seen in the depth colors mode). The Lawson Klein bottle, + * This program shows three different Klein bottles in 4d: the figure-8 Klein + * bottle, the squeezed torus Klein bottle, or the Lawson Klein bottle. You + * can walk on the Klein bottle, see it turn in 4d, or walk on it while it + * turns in 4d. The figure-8 Klein bottle is well known in its 3d form. The + * 4d form used in this program is an extension of the 3d form to 4d that + * does not intersect itself in 4d (which can be seen in the depth colors + * mode). The squeezed torus Klein bottle also does not intersect itself in + * 4d (which can be seen in the depth colors mode). The Lawson Klein bottle, * on the other hand, does intersect itself in 4d. Its primary use is that * it has a nice appearance for walking and for turning in 3d. The Klein * bottle is a non-orientable surface. To make this apparent, the two-sided @@ -45,10 +48,11 @@ static const char sccsid[] = "@(#)klein.c 1.1 08/10/04 xlockmore"; * Klein bottle. For example, the Lawson Klein bottle looks nicest when * projected perspectively. The figure-8 Klein bottle, on the other * hand, looks nicer while walking when projected orthographically from 4d. - * The projected Klein bottle can then be projected to the screen either - * perspectively or orthographically. When using the walking modes, - * perspective projection to the screen should be used. There are three - * display modes for the Klein bottle: mesh (wireframe), solid, or + * For the squeezed torus Klein bottle, both projection modes give equally + * acceptable projections. The projected Klein bottle can then be projected + * to the screen either perspectively or orthographically. When using the + * walking modes, perspective projection to the screen should be used. There + * are three display modes for the Klein bottle: mesh (wireframe), solid, or * transparent. Furthermore, the appearance of the Klein bottle can be as * a solid object or as a set of see-through bands. Finally, the colors * with with the Klein bottle is drawn can be set to two-sided, rainbow, or @@ -61,68 +65,70 @@ static const char sccsid[] = "@(#)klein.c 1.1 08/10/04 xlockmore"; * combined with the see-through bands mode or with the orientation markers * drawn. The third mode draws the Klein bottle with colors that are chosen * according to the 4d "depth" of the points. This mode enables you to see - * that the figure-8 Klein bottle does not intersect itself in 4d, while the - * Lawson Klein bottle does intersect itself. The rotation speed for each - * of the six planes around which the Klein bottle rotates can be chosen. - * For the walk-and-turn more, only the rotation speeds around the true 4d - * planes are used (the xy, xz, and yz planes). Furthermore, in the walking - * modes the walking direction in the 2d base square of the Klein bottle and - * the walking speed can be chosen. This program is somewhat inspired by - * Thomas Banchoff's book "Beyond the Third Dimension: Geometry, Computer - * Graphics, and Higher Dimensions", Scientific American Library, 1990. + * that the figure-8 and squeezed torus Klein bottles do not intersect + * themselves in 4d, while the Lawson Klein bottle does intersect itself. + * The rotation speed for each of the six planes around which the Klein + * bottle rotates can be chosen. For the walk-and-turn more, only the + * rotation speeds around the true 4d planes are used (the xy, xz, and yz + * planes). Furthermore, in the walking modes the walking direction in the + * 2d base square of the Klein bottle and the walking speed can be chosen. + * This program is somewhat inspired by Thomas Banchoff's book "Beyond the + * Third Dimension: Geometry, Computer Graphics, and Higher Dimensions", + * Scientific American Library, 1990. */ #ifndef M_PI #define M_PI 3.14159265358979323846 #endif -#define KLEIN_BOTTLE_FIGURE_8 0 -#define KLEIN_BOTTLE_LAWSON 1 -#define NUM_KLEIN_BOTTLES 2 - -#define DISP_WIREFRAME 0 -#define DISP_SURFACE 1 -#define DISP_TRANSPARENT 2 -#define NUM_DISPLAY_MODES 3 - -#define APPEARANCE_SOLID 0 -#define APPEARANCE_BANDS 1 -#define NUM_APPEARANCES 2 - -#define COLORS_TWOSIDED 0 -#define COLORS_RAINBOW 1 -#define COLORS_DEPTH 2 -#define NUM_COLORS 3 - -#define VIEW_WALK 0 -#define VIEW_TURN 1 -#define VIEW_WALKTURN 2 -#define NUM_VIEW_MODES 3 - -#define DISP_3D_PERSPECTIVE 0 -#define DISP_3D_ORTHOGRAPHIC 1 -#define NUM_DISP_3D_MODES 2 - -#define DISP_4D_PERSPECTIVE 0 -#define DISP_4D_ORTHOGRAPHIC 1 -#define NUM_DISP_4D_MODES 2 - -#define DEF_KLEIN_BOTTLE "random" -#define DEF_DISPLAY_MODE "random" -#define DEF_APPEARANCE "random" -#define DEF_COLORS "random" -#define DEF_VIEW_MODE "random" -#define DEF_MARKS "False" -#define DEF_PROJECTION_3D "random" -#define DEF_PROJECTION_4D "random" -#define DEF_SPEEDWX "1.1" -#define DEF_SPEEDWY "1.3" -#define DEF_SPEEDWZ "1.5" -#define DEF_SPEEDXY "1.7" -#define DEF_SPEEDXZ "1.9" -#define DEF_SPEEDYZ "2.1" -#define DEF_WALK_DIRECTION "7.0" -#define DEF_WALK_SPEED "20.0" +#define KLEIN_BOTTLE_FIGURE_8 0 +#define KLEIN_BOTTLE_SQUEEZED_TORUS 1 +#define KLEIN_BOTTLE_LAWSON 2 +#define NUM_KLEIN_BOTTLES 3 + +#define DISP_WIREFRAME 0 +#define DISP_SURFACE 1 +#define DISP_TRANSPARENT 2 +#define NUM_DISPLAY_MODES 3 + +#define APPEARANCE_SOLID 0 +#define APPEARANCE_BANDS 1 +#define NUM_APPEARANCES 2 + +#define COLORS_TWOSIDED 0 +#define COLORS_RAINBOW 1 +#define COLORS_DEPTH 2 +#define NUM_COLORS 3 + +#define VIEW_WALK 0 +#define VIEW_TURN 1 +#define VIEW_WALKTURN 2 +#define NUM_VIEW_MODES 3 + +#define DISP_3D_PERSPECTIVE 0 +#define DISP_3D_ORTHOGRAPHIC 1 +#define NUM_DISP_3D_MODES 2 + +#define DISP_4D_PERSPECTIVE 0 +#define DISP_4D_ORTHOGRAPHIC 1 +#define NUM_DISP_4D_MODES 2 + +#define DEF_KLEIN_BOTTLE "random" +#define DEF_DISPLAY_MODE "random" +#define DEF_APPEARANCE "random" +#define DEF_COLORS "random" +#define DEF_VIEW_MODE "random" +#define DEF_MARKS "False" +#define DEF_PROJECTION_3D "random" +#define DEF_PROJECTION_4D "random" +#define DEF_SPEEDWX "1.1" +#define DEF_SPEEDWY "1.3" +#define DEF_SPEEDWZ "1.5" +#define DEF_SPEEDXY "1.7" +#define DEF_SPEEDXZ "1.9" +#define DEF_SPEEDYZ "2.1" +#define DEF_WALK_DIRECTION "7.0" +#define DEF_WALK_SPEED "20.0" #ifdef STANDALONE # define DEFAULTS "*delay: 10000 \n" \ @@ -182,6 +188,7 @@ static XrmOptionDescRec opts[] = { {"-klein-bottle", ".kleinBottle", XrmoptionSepArg, 0 }, {"-figure-8", ".kleinBottle", XrmoptionNoArg, "figure-8" }, + {"-squeezed-torus", ".kleinBottle", XrmoptionNoArg, "squeezed-torus" }, {"-lawson", ".kleinBottle", XrmoptionNoArg, "lawson" }, {"-mode", ".displayMode", XrmoptionSepArg, 0 }, {"-wireframe", ".displayMode", XrmoptionNoArg, "wireframe" }, @@ -240,9 +247,12 @@ ENTRYPOINT ModeSpecOpt klein_opts = {sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, NULL}; -/* Radius of the Figure 8 Klein bottle */ +/* Radius of the figure-8 Klein bottle */ #define FIGURE_8_RADIUS 2.0 +/* Radius of the squeezed torus Klein bottle */ +#define SQUEEZED_TORUS_RADIUS 2.0 + /* Offset by which we walk above the Klein bottle */ #define DELTAY 0.02 @@ -860,6 +870,59 @@ static void setup_figure8(ModeInfo *mi, double umin, double umax, double vmin, } +/* Set up the squeezed torus Klein bottle coordinates, colors, and texture. */ +static void setup_squeezed_torus(ModeInfo *mi, double umin, double umax, + double vmin, double vmax) +{ + int i, j, k, l; + double u, v, ur, vr; + double cu, su, cv, sv, cv2, sv2; + kleinstruct *kb = &klein[MI_SCREEN(mi)]; + + ur = umax-umin; + vr = vmax-vmin; + for (i=0; i<=NUMU; i++) + { + for (j=0; j<=NUMV; j++) + { + k = i*(NUMV+1)+j; + u = -ur*j/NUMU+umin; + v = vr*i/NUMV+vmin; + if (colors == COLORS_DEPTH) + color((sin(u)*sin(0.5*v)+1.0)*M_PI*2.0/3.0,kb->col[k]); + else + color(v,kb->col[k]); + kb->tex[k][0] = -32*u/(2.0*M_PI); + kb->tex[k][1] = 32*v/(2.0*M_PI); + cu = cos(u); + su = sin(u); + cv = cos(v); + sv = sin(v); + cv2 = cos(0.5*v); + sv2 = sin(0.5*v); + kb->x[k][0] = (SQUEEZED_TORUS_RADIUS+cu)*cv; + kb->x[k][1] = (SQUEEZED_TORUS_RADIUS+cu)*sv; + kb->x[k][2] = su*cv2; + kb->x[k][3] = su*sv2; + kb->xu[k][0] = -su*cv; + kb->xu[k][1] = -su*sv; + kb->xu[k][2] = cu*cv2; + kb->xu[k][3] = cu*sv2; + kb->xv[k][0] = -(SQUEEZED_TORUS_RADIUS+cu)*sv; + kb->xv[k][1] = (SQUEEZED_TORUS_RADIUS+cu)*cv; + kb->xv[k][2] = -0.5*su*sv2; + kb->xv[k][3] = 0.5*su*cv2; + for (l=0; l<4; l++) + { + kb->x[k][l] /= SQUEEZED_TORUS_RADIUS+1.25; + kb->xu[k][l] /= SQUEEZED_TORUS_RADIUS+1.25; + kb->xv[k][l] /= SQUEEZED_TORUS_RADIUS+1.25; + } + } + } +} + + /* Set up the Lawson Klein bottle coordinates, colors, and texture. */ static void setup_lawson(ModeInfo *mi, double umin, double umax, double vmin, double vmax) @@ -1020,7 +1083,7 @@ static int figure8(ModeInfo *mi, double umin, double umax, double vmin, | -pm[0] -pm[1] -pm[2] | */ kb->alpha = atan2(-n[2],-pm[2])*180/M_PI; - kb->beta = atan2( -b[2],sqrt(b[0]*b[0]+b[1]*b[1]))*180/M_PI; + kb->beta = atan2(-b[2],sqrt(b[0]*b[0]+b[1]*b[1]))*180/M_PI; kb->delta = atan2(b[1],-b[0])*180/M_PI; /* Compute the rotation that rotates the Klein bottle in 4D. */ @@ -1175,6 +1238,268 @@ static int figure8(ModeInfo *mi, double umin, double umax, double vmin, } +/* Draw a squeezed torus Klein bottle projected into 3D. */ +static int squeezed_torus(ModeInfo *mi, double umin, double umax, double vmin, + double vmax) +{ + int polys = 0; + static const GLfloat mat_diff_red[] = { 1.0, 0.0, 0.0, 1.0 }; + static const GLfloat mat_diff_green[] = { 0.0, 1.0, 0.0, 1.0 }; + static const GLfloat mat_diff_trans_red[] = { 1.0, 0.0, 0.0, 0.7 }; + static const GLfloat mat_diff_trans_green[] = { 0.0, 1.0, 0.0, 0.7 }; + float p[3], pu[3], pv[3], pm[3], n[3], b[3], mat[4][4]; + int i, j, k, l, m, o; + double u, v; + double xx[4], xxu[4], xxv[4], y[4], yu[4], yv[4]; + double q, r, s, t; + double cu, su, cv, sv, cv2, sv2; + float q1[4], q2[4], r1[4][4], r2[4][4]; + kleinstruct *kb = &klein[MI_SCREEN(mi)]; + + if (view == VIEW_WALK || view == VIEW_WALKTURN) + { + /* Compute the rotation that rotates the Klein bottle in 4D without the + trackball rotations. */ + rotateall4d(kb->zeta,kb->eta,kb->theta,mat); + + u = kb->umove; + v = kb->vmove; + cu = cos(u); + su = sin(u); + cv = cos(v); + sv = sin(v); + cv2 = cos(0.5*v); + sv2 = sin(0.5*v); + xx[0] = (SQUEEZED_TORUS_RADIUS+cu)*cv; + xx[1] = (SQUEEZED_TORUS_RADIUS+cu)*sv; + xx[2] = su*cv2; + xx[3] = su*sv2; + xxu[0] = -su*cv; + xxu[1] = -su*sv; + xxu[2] = cu*cv2; + xxu[3] = cu*sv2; + xxv[0] = -(SQUEEZED_TORUS_RADIUS+cu)*sv; + xxv[1] = (SQUEEZED_TORUS_RADIUS+cu)*cv; + xxv[2] = -0.5*su*sv2; + xxv[3] = 0.5*su*cv2; + for (l=0; l<4; l++) + { + xx[l] /= SQUEEZED_TORUS_RADIUS+1.25; + xxu[l] /= SQUEEZED_TORUS_RADIUS+1.25; + xxv[l] /= SQUEEZED_TORUS_RADIUS+1.25; + } + for (l=0; l<4; l++) + { + y[l] = (mat[l][0]*xx[0]+mat[l][1]*xx[1]+ + mat[l][2]*xx[2]+mat[l][3]*xx[3]); + yu[l] = (mat[l][0]*xxu[0]+mat[l][1]*xxu[1]+ + mat[l][2]*xxu[2]+mat[l][3]*xxu[3]); + yv[l] = (mat[l][0]*xxv[0]+mat[l][1]*xxv[1]+ + mat[l][2]*xxv[2]+mat[l][3]*xxv[3]); + } + if (projection_4d == DISP_4D_ORTHOGRAPHIC) + { + for (l=0; l<3; l++) + { + p[l] = y[l]+kb->offset4d[l]; + pu[l] = yu[l]; + pv[l] = yv[l]; + } + } + else + { + s = y[3]+kb->offset4d[3]; + q = 1.0/s; + t = q*q; + for (l=0; l<3; l++) + { + r = y[l]+kb->offset4d[l]; + p[l] = r*q; + pu[l] = (yu[l]*s-r*yu[3])*t; + pv[l] = (yv[l]*s-r*yv[3])*t; + } + } + n[0] = pu[1]*pv[2]-pu[2]*pv[1]; + n[1] = pu[2]*pv[0]-pu[0]*pv[2]; + n[2] = pu[0]*pv[1]-pu[1]*pv[0]; + t = 1.0/(kb->side*4.0*sqrt(n[0]*n[0]+n[1]*n[1]+n[2]*n[2])); + n[0] *= t; + n[1] *= t; + n[2] *= t; + pm[0] = pu[0]*kb->dumove+pv[0]*kb->dvmove; + pm[1] = pu[1]*kb->dumove+pv[1]*kb->dvmove; + pm[2] = pu[2]*kb->dumove+pv[2]*kb->dvmove; + t = 1.0/(4.0*sqrt(pm[0]*pm[0]+pm[1]*pm[1]+pm[2]*pm[2])); + pm[0] *= t; + pm[1] *= t; + pm[2] *= t; + b[0] = n[1]*pm[2]-n[2]*pm[1]; + b[1] = n[2]*pm[0]-n[0]*pm[2]; + b[2] = n[0]*pm[1]-n[1]*pm[0]; + t = 1.0/(4.0*sqrt(b[0]*b[0]+b[1]*b[1]+b[2]*b[2])); + b[0] *= t; + b[1] *= t; + b[2] *= t; + + /* Compute alpha, beta, delta from the three basis vectors. + | -b[0] -b[1] -b[2] | + m = | n[0] n[1] n[2] | + | -pm[0] -pm[1] -pm[2] | + */ + kb->alpha = atan2(-n[2],-pm[2])*180/M_PI; + kb->beta = atan2(-b[2],sqrt(b[0]*b[0]+b[1]*b[1]))*180/M_PI; + kb->delta = atan2(b[1],-b[0])*180/M_PI; + + /* Compute the rotation that rotates the Klein bottle in 4D. */ + rotateall(kb->alpha,kb->beta,kb->delta,kb->zeta,kb->eta,kb->theta,mat); + + u = kb->umove; + v = kb->vmove; + cu = cos(u); + su = sin(u); + cv = cos(v); + sv = sin(v); + cv2 = cos(0.5*v); + sv2 = sin(0.5*v); + xx[0] = (SQUEEZED_TORUS_RADIUS+cu)*cv; + xx[1] = (SQUEEZED_TORUS_RADIUS+cu)*sv; + xx[2] = su*cv2; + xx[3] = su*sv2; + for (l=0; l<4; l++) + xx[l] /= SQUEEZED_TORUS_RADIUS+1.25; + for (l=0; l<4; l++) + { + r = 0.0; + for (m=0; m<4; m++) + r += mat[l][m]*xx[m]; + y[l] = r; + } + if (projection_4d == DISP_4D_ORTHOGRAPHIC) + { + for (l=0; l<3; l++) + p[l] = y[l]+kb->offset4d[l]; + } + else + { + s = y[3]+kb->offset4d[3]; + for (l=0; l<3; l++) + p[l] = (y[l]+kb->offset4d[l])/s; + } + + kb->offset3d[0] = -p[0]; + kb->offset3d[1] = -p[1]-DELTAY; + kb->offset3d[2] = -p[2]; + } + else + { + /* Compute the rotation that rotates the Klein bottle in 4D, including + the trackball rotations. */ + rotateall(kb->alpha,kb->beta,kb->delta,kb->zeta,kb->eta,kb->theta,r1); + + gltrackball_get_quaternion(kb->trackballs[0],q1); + gltrackball_get_quaternion(kb->trackballs[1],q2); + quats_to_rotmat(q1,q2,r2); + + mult_rotmat(r2,r1,mat); + } + + /* Project the points from 4D to 3D. */ + for (i=0; i<=NUMU; i++) + { + for (j=0; j<=NUMV; j++) + { + o = i*(NUMV+1)+j; + for (l=0; l<4; l++) + { + y[l] = (mat[l][0]*kb->x[o][0]+mat[l][1]*kb->x[o][1]+ + mat[l][2]*kb->x[o][2]+mat[l][3]*kb->x[o][3]); + yu[l] = (mat[l][0]*kb->xu[o][0]+mat[l][1]*kb->xu[o][1]+ + mat[l][2]*kb->xu[o][2]+mat[l][3]*kb->xu[o][3]); + yv[l] = (mat[l][0]*kb->xv[o][0]+mat[l][1]*kb->xv[o][1]+ + mat[l][2]*kb->xv[o][2]+mat[l][3]*kb->xv[o][3]); + } + if (projection_4d == DISP_4D_ORTHOGRAPHIC) + { + for (l=0; l<3; l++) + { + kb->pp[o][l] = (y[l]+kb->offset4d[l])+kb->offset3d[l]; + pu[l] = yu[l]; + pv[l] = yv[l]; + } + } + else + { + s = y[3]+kb->offset4d[3]; + q = 1.0/s; + t = q*q; + for (l=0; l<3; l++) + { + r = y[l]+kb->offset4d[l]; + kb->pp[o][l] = r*q+kb->offset3d[l]; + pu[l] = (yu[l]*s-r*yu[3])*t; + pv[l] = (yv[l]*s-r*yv[3])*t; + } + } + kb->pn[o][0] = pu[1]*pv[2]-pu[2]*pv[1]; + kb->pn[o][1] = pu[2]*pv[0]-pu[0]*pv[2]; + kb->pn[o][2] = pu[0]*pv[1]-pu[1]*pv[0]; + t = 1.0/sqrt(kb->pn[o][0]*kb->pn[o][0]+kb->pn[o][1]*kb->pn[o][1]+ + kb->pn[o][2]*kb->pn[o][2]); + kb->pn[o][0] *= t; + kb->pn[o][1] *= t; + kb->pn[o][2] *= t; + } + } + + if (colors == COLORS_TWOSIDED) + { + glColor3fv(mat_diff_red); + if (display_mode == DISP_TRANSPARENT) + { + glMaterialfv(GL_FRONT,GL_AMBIENT_AND_DIFFUSE,mat_diff_trans_red); + glMaterialfv(GL_BACK,GL_AMBIENT_AND_DIFFUSE,mat_diff_trans_green); + } + else + { + glMaterialfv(GL_FRONT,GL_AMBIENT_AND_DIFFUSE,mat_diff_red); + glMaterialfv(GL_BACK,GL_AMBIENT_AND_DIFFUSE,mat_diff_green); + } + } + glBindTexture(GL_TEXTURE_2D,kb->tex_name); + + for (i=0; i= NUMB/2)) + continue; + if (display_mode == DISP_WIREFRAME) + glBegin(GL_QUAD_STRIP); + else + glBegin(GL_TRIANGLE_STRIP); + for (j=0; j<=NUMV; j++) + { + for (k=0; k<=1; k++) + { + l = (i+k); + m = j; + o = l*(NUMV+1)+m; + glNormal3fv(kb->pn[o]); + glTexCoord2fv(kb->tex[o]); + if (colors != COLORS_TWOSIDED) + { + glColor3fv(kb->col[o]); + glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,kb->col[o]); + } + glVertex3fv(kb->pp[o]); + polys++; + } + } + glEnd(); + } + polys /= 2; + return polys; +} + + /* Draw a Lawson Klein bottle projected into 3D. */ static int lawson(ModeInfo *mi, double umin, double umax, double vmin, double vmax) @@ -1278,7 +1603,7 @@ static int lawson(ModeInfo *mi, double umin, double umax, double vmin, | -pm[0] -pm[1] -pm[2] | */ kb->alpha = atan2(-n[2],-pm[2])*180/M_PI; - kb->beta = atan2( -b[2],sqrt(b[0]*b[0]+b[1]*b[1]))*180/M_PI; + kb->beta = atan2(-b[2],sqrt(b[0]*b[0]+b[1]*b[1]))*180/M_PI; kb->delta = atan2(b[1],-b[0])*180/M_PI; /* Compute the rotation that rotates the Klein bottle in 4D. */ @@ -1472,7 +1797,8 @@ static void init(ModeInfo *mi) kb->delta = 0.0; } kb->zeta = 0.0; - if (bottle_type == KLEIN_BOTTLE_FIGURE_8) + if (bottle_type == KLEIN_BOTTLE_FIGURE_8 || + bottle_type == KLEIN_BOTTLE_SQUEEZED_TORUS) kb->eta = 0.0; else kb->eta = 45.0; @@ -1497,7 +1823,18 @@ static void init(ModeInfo *mi) kb->offset3d[2] = -1.9; kb->offset3d[3] = 0.0; } - else + else if (bottle_type == KLEIN_BOTTLE_SQUEEZED_TORUS) + { + kb->offset4d[0] = 0.0; + kb->offset4d[1] = 0.0; + kb->offset4d[2] = 0.0; + kb->offset4d[3] = 1.4; + kb->offset3d[0] = 0.0; + kb->offset3d[1] = 0.0; + kb->offset3d[2] = -2.0; + kb->offset3d[3] = 0.0; + } + else /* bottle_type == KLEIN_BOTTLE_LAWSON */ { kb->offset4d[0] = 0.0; kb->offset4d[1] = 0.0; @@ -1519,7 +1856,9 @@ static void init(ModeInfo *mi) gen_texture(mi); if (bottle_type == KLEIN_BOTTLE_FIGURE_8) setup_figure8(mi,0.0,2.0*M_PI,0.0,2.0*M_PI); - else + else if (bottle_type == KLEIN_BOTTLE_SQUEEZED_TORUS) + setup_squeezed_torus(mi,0.0,2.0*M_PI,0.0,2.0*M_PI); + else /* bottle_type == KLEIN_BOTTLE_LAWSON */ setup_lawson(mi,0.0,2.0*M_PI,0.0,2.0*M_PI); if (marks) @@ -1546,7 +1885,7 @@ static void init(ModeInfo *mi) # ifdef HAVE_JWZGLES /* #### glPolygonMode other than GL_FILL unimplemented */ if (display_mode == DISP_WIREFRAME) - display_mode = DISP_SURFACE; + display_mode = DISP_SURFACE; # endif if (display_mode == DISP_SURFACE) @@ -1679,7 +2018,9 @@ static void display_klein(ModeInfo *mi) if (bottle_type == KLEIN_BOTTLE_FIGURE_8) mi->polygon_count = figure8(mi,0.0,2.0*M_PI,0.0,2.0*M_PI); - else + else if (bottle_type == KLEIN_BOTTLE_SQUEEZED_TORUS) + mi->polygon_count = squeezed_torus(mi,0.0,2.0*M_PI,0.0,2.0*M_PI); + else /* bottle_type == KLEIN_BOTTLE_LAWSON */ mi->polygon_count = lawson(mi,0.0,2.0*M_PI,0.0,2.0*M_PI); } @@ -1797,6 +2138,10 @@ ENTRYPOINT void init_klein(ModeInfo *mi) { bottle_type = KLEIN_BOTTLE_FIGURE_8; } + else if (!strcasecmp(klein_bottle,"squeezed-torus")) + { + bottle_type = KLEIN_BOTTLE_SQUEEZED_TORUS; + } else if (!strcasecmp(klein_bottle,"lawson")) { bottle_type = KLEIN_BOTTLE_LAWSON;